129 research outputs found

    SU(p,q)SU(p,q) coherent states and a Gaussian de Finetti theorem

    Full text link
    We prove a generalization of the quantum de Finetti theorem when the local space is an infinite-dimensional Fock space. In particular, instead of considering the action of the permutation group on nn copies of that space, we consider the action of the unitary group U(n)U(n) on the creation operators of the nn modes and define a natural generalization of the symmetric subspace as the space of states invariant under unitaries in U(n)U(n). Our first result is a complete characterization of this subspace, which turns out to be spanned by a family of generalized coherent states related to the special unitary group SU(p,q)SU(p,q) of signature (p,q)(p,q). More precisely, this construction yields a unitary representation of the noncompact simple real Lie group SU(p,q)SU(p,q). We therefore find a dual unitary representation of the pair of groups U(n)U(n) and SU(p,q)SU(p,q) on an n(p+q)n(p+q)-mode Fock space. The (Gaussian) SU(p,q)SU(p,q) coherent states resolve the identity on the symmetric subspace, which implies a Gaussian de Finetti theorem stating that tracing over a few modes of a unitary-invariant state yields a state close to a mixture of Gaussian states. As an application of this de Finetti theorem, we show that the n×nn\times n upper-left submatrix of an n×nn\times n Haar-invariant unitary matrix is close in total variation distance to a matrix of independent normal variables if n3=O(m)n^3 =O(m).Comment: v2: 39 pages, including new application to truncations of Haar random matrices. Comments are welcom

    Composable security proof for continuous-variable quantum key distribution with coherent states

    Get PDF
    We give the first composable security proof for continuous-variable quantum key distribution with coherent states against collective attacks. Crucially, in the limit of large blocks the secret key rate converges to the usual value computed from the Holevo bound. Combining our proof with either the de Finetti theorem or the Postselection technique then shows the security of the protocol against general attacks, thereby confirming the long-standing conjecture that Gaussian attacks are optimal asymptotically in the composable security framework. We expect that our parameter estimation procedure, which does not rely on any assumption, will find applications elsewhere, for instance for the reliable quantification of continuous-variable entanglement in finite-size settings.Comment: 27 pages, 1 figure. v2: added a version of the AEP valid for conditional state

    Distributing Secret Keys with Quantum Continuous Variables: Principle, Security and Implementations

    Full text link
    The ability to distribute secret keys between two parties with information-theoretic security, that is, regardless of the capacities of a malevolent eavesdropper, is one of the most celebrated results in the field of quantum information processing and communication. Indeed, quantum key distribution illustrates the power of encoding information on the quantum properties of light and has far reaching implications in high-security applications. Today, quantum key distribution systems operate in real-world conditions and are commercially available. As with most quantum information protocols, quantum key distribution was first designed for qubits, the individual quanta of information. However, the use of quantum continuous variables for this task presents important advantages with respect to qubit based protocols, in particular from a practical point of view, since it allows for simple implementations that require only standard telecommunication technology. In this review article, we describe the principle of continuous-variable quantum key distribution, focusing in particular on protocols based on coherent states. We discuss the security of these protocols and report on the state-of-the-art in experimental implementations, including the issue of side-channel attacks. We conclude with promising perspectives in this research field.Comment: 21 pages, 2 figures, 1 tabl

    Analysis of circuit imperfections in BosonSampling

    Full text link
    BosonSampling is a problem where a quantum computer offers a provable speedup over classical computers. Its main feature is that it can be solved with current linear optics technology, without the need for a full quantum computer. In this work, we investigate whether an experimentally realistic BosonSampler can really solve BosonSampling without any fault-tolerance mechanism. More precisely, we study how the unavoidable errors linked to an imperfect calibration of the optical elements affect the final result of the computation. We show that the fidelity of each optical element must be at least 1−O(1/n2)1 - O(1/n^2), where nn refers to the number of single photons in the scheme. Such a requirement seems to be achievable with state-of-the-art equipment.Comment: 20 pages, 7 figures, v2: new title, to appear in QI

    Information reconciliation for discretely-modulated continuous-variable quantum key distribution

    Full text link
    The goal of this note is to explain the reconciliation problem for continuous-variable quantum key distribution protocols with a discrete modulation. Such modulation formats are attractive since they significantly simplify experimental implementations compared to protocols with a Gaussian modulation. Previous security proofs that relied crucially on the Gaussian distribution of the input states are rendered inapplicable, and new proofs based on the entropy accumulation theorem have emerged. Unfortunately, these proofs are not compatible with existing reconciliation procedures, and necessitate a reevaluation of the reconciliation problem. We argue that this problem is nontrivial and deserves further attention. In particular, assuming it can be solved with optimal efficiency leads to overly optimistic predictions for the performance of the key distribution protocol, in particular for long distances.Comment: 11 pages, 1 figur

    Probabilistic models on contextuality scenarios

    Full text link
    We introduce a framework to describe probabilistic models in Bell experiments, and more generally in contextuality scenarios. Such a scenario is a hypergraph whose vertices represent elementary events and hyperedges correspond to measurements. A probabilistic model on such a scenario associates to each event a probability, in such a way that events in a given measurement have a total probability equal to one. We discuss the advantages of this framework, like the unification of the notions of contexuality and nonlocality, and give a short overview of results obtained elsewhere.Comment: In Proceedings QPL 2013, arXiv:1412.791
    • …
    corecore